

PHYSICS

CRASH COURSE

LECTURE - 02

TOPICS : Kinematics

1. A person walks up a stationary escalator in time t_1 . If he remains stationary on the escalator, then it can take him up in time t_2 . How much time would it take him to walk up the moving escalator ?

(a)
$$\frac{t_1 + t_2}{2}$$
 (b) $\sqrt{t_1 t_2}$
(c) $\frac{t_1 t_2}{t_1 + t_2}$ (d) $t_1 + t_2$

2. The velocity-time graph of a body is shown in figure. The displacement covered by the body in 8 s is

(b)	12 m
	(b)

- (c) 10 m (d) 28 m
- 3. A streamer moves with velocity 3 km h⁻¹ in and against the direction of river water whose velocity is 2 km h⁻¹. Calculate its total time for total journey if the boat travels 2 km in direction of the stream and then back to his place.

(a)	2 h	(b)) 2.5 h
· /			

- (c) 2.4 h (d) 3 h
- 4. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t the maximum velocity acquired by the car is

(a)
$$\frac{(\alpha + \beta^2)t}{\alpha\beta}$$
 (b) $\frac{\alpha\beta}{t(\alpha + \beta)}$

(c)
$$\frac{\alpha\beta}{(\alpha+\beta)}$$
 (d) $\frac{(\alpha+\beta)t}{\alpha\beta}$

5. A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the particle from O is given by $x = 40 + 12t - t^3$

How long would the particle travel before coming to rest ?

(a) 24 m	(b) 40 m
(c) 12 m	(d) 16 m

6. A car covers the first one-third of distance x at a speed of 10 km h^{-1} , the second one-third at a speed of 20 km h⁻¹ and the last one-third at a speed of 60 km h⁻¹. Find the average speed of the car over the entire distance x.

(a) $10 \text{ km } \text{h}^{-1}$ (b) $12 \text{ km } \text{h}^{-1}$

- (c) $18 \text{ km } h^{-1}$ (d) $20 \text{ km } h^{-1}$
- 7. From the top of a tower, a particle is thrown vertically downwards with a velocity of 10 ms⁻¹. The ratio of distance covered by it in the 3^{rd} and 2^{nd} seconds of the motion is (Take g = 10 ms⁻²)
 - (a) 5:7 (b) 7:5
 - (c) 3:6 (d) 6:3
- 8. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 - t^3$, where x is in metre and t in second. What will be the position of this particle when it achieves maximum speed along the + x direction ?

(a)	32 m	(b)	54 m
(c)	81 m	(d)	24 m

9. A particle initially at rest moves along the x-axis. Its acceleration a varies with time as a = 4t. If it starts from the origin, the distance covered by it in 3 second is

	(a)	12 m	(b)	18 m
--	-----	------	-----	------

(c) 24 m	(d) 36 m
----------	----------

10. A ball is dropped on the floor from a height of 10 m. It rebounds to a height of 2.5 m. If the ball is in contact with the floor for 0.01 seconds, what is the average acceleration during contact ?

(Take $g = 10 \text{ ms}^{-2}$)

- (a) 700 ms^{-2} (b) 1400 ms^{-2}
- (c) 2100 ms^{-2} (d) 2800 ms^{-2}

LECTURE - 02

AVIRAL CLASSES PHYSICS CRASH COURSE

IIT-JEE | NEET | FOUNDATIONS

TOPICS : Kinematics (SOLUTION)

5.

6.

7.

- 1. (c) : Let *L* be the length of escalator. Speed of man w.r.t. escalator is $v_{mc} = \frac{L}{t_1}$ Speed of escalator is $v_c = \frac{L}{t_2}$ \therefore Speed of man with respect to ground would be $v_m = v_{mc} + v_c = L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)$ \therefore The desired time is $t = \frac{L}{v_m} = \frac{t_1 t_2}{t_1 + t_2}$
- (c) : Displacement in 8 s = Algebraic sum of the area under velocity-time graph

 $= 2 \times 2 + \frac{1}{2} \times 1 \times 4 + 1 \times 2 + \frac{1}{2} \times 1 \times 6 - \frac{1}{2} \times 16 - 6 \times 1 + 2 \times 4$ = 4 + 2 + 2 + 3 - 3 - 6 + 8 = 10 m,

3. (c) : The velocity of streamer while moving downstream = $3 \text{ km } h^{-1} + 2 \text{ km } h^{-1} = 5 \text{ km } h^{-1}$ and while moving upstream = $3 \text{ km } h^{-1} - 2 \text{ km } h^{-1} = 1 \text{ km } h^{-1}$.

Total time taken = $\frac{2 \text{ km}}{5 \text{ km h}^{-1}} + \frac{2 \text{ km}}{1 \text{ km h}^{-1}} = 0.4 \text{ h} + 2 \text{ h} = 2.4 \text{ h}$

and
$$\beta$$
 = slope of line $AB = \frac{v_{max}}{t_2}$
or $t_2 = \frac{v_{max}}{\beta}$...(iii)
From Eqs. (i), (ii) and (iii), we get
 $t = \frac{v_{max}}{t_2} + \frac{v_{max}}{t_2}$ or $t = v_{max} \left(\frac{1}{t_2} + \frac{1}{t_2}\right)$

or
$$t = v_{max} \left(\frac{\alpha + \beta}{\alpha \beta} \right)$$
 or $v_{max} = \frac{\alpha \beta t}{\alpha + \beta}$

(d): Given:
$$x = 40 + 12t - t^3$$

 \therefore Velocity, $v = \frac{dx}{dt} = \frac{d}{dt} (40 + 12t - t^3) = 12 - 3t^2$
When particle comes to rest, $v = 0$
 $\therefore \quad 0 = 12 - 3t^2$ or $t = 2$ s
When $t = 0, x_0 = 40 + 12 \times 0 - 0^3 = 40$ m
When $t = 2$ s, $x_2 = 40 + 12 \times 2 - 2^3 = 56$ m
 \therefore Distance travelled before coming to rest
 $S = x_2 - x_0 = 56$ m $- 40$ m $= 16$ m

(c) : For first one-third of distance Distance covered $= \frac{x}{3}$ km Speed = 10 km h⁻¹. The time taken for the fourney, $t_1 = \frac{x/3}{10}$ h $= \frac{x}{30}$ h For the next one-third of distance : Distance covered $= \frac{x}{3}$ km. Speed = 20 km h⁻¹ The time taken for travel is $t_2 = \frac{x/3}{20}$ h $= \frac{x}{60}$ h For the last one-third of distance : Distance covered $= \frac{x}{3}$ km. Speed is 60 km h⁻¹ The time taken for travel is $t_3 = \frac{x/3}{60}$ h $= \frac{x}{180}$ h \therefore Average Speed $= \frac{\text{total distance}}{\text{total time}} = \frac{x}{\frac{x}{30} + \frac{x}{60} + \frac{x}{180}}$ $= \frac{180x}{10x} = 18$ km h⁻¹

(b) : Distance travelled in 3rd second $S_3 = 10 + \frac{10}{2} (2 \times 3 - 1) = 35 \text{ m}$ Distance travelled in 2nd second,

$$S_2 = 10 + \frac{10}{2} (2 \times 2 - 1) = 25 \text{ m} \implies \frac{S_3}{S_2} = \frac{7}{5}$$

AVIRAL CLASSES

www.aviral.co.in

(b) : Given, $x = 9t^2 - t^3$

...(i)

and
$$a = \frac{dv}{dt} = 18 - 6t$$
 ...(iii)

Now, when speed of particle is maximum, its acceleration is zero, *i.e.*, a = 0

 \therefore 18 – 6t = 0 or t = 3 s

 $v = \frac{dx}{dt} = 18t - 3t^2$

Putting in Eq. (i), we obtain position of particle at that time $x = 9(3)^2 - (3)^3 = 54$ m

(c) : $v_1 = \sqrt{2gh} = \sqrt{2 \times 10 \times 10} = \sqrt{200}$ $v_2 = -\sqrt{2gh} = -\sqrt{2 \times 10 \times 2.5} = -\sqrt{50}$ So $\Delta v = v_1 - v_2 = \sqrt{200} + \sqrt{50} = 3\sqrt{50} = 21$ \therefore Acceleration $= \frac{\Delta v}{\Delta t} = \frac{21}{0.01} = 2100 \text{ m s}^{-2}$