PHYSICS
CRASH COURSE

TOPICS : Kinematics

1. A person walks up a stationary escalator in time t_{1}. If he remains stationary on the escalator, then it can take him up in time t_{2}. How much time would it take him to walk up the moving escalator ?
(a) $\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}$
(b) $\sqrt{t_{1} t_{2}}$
(c) $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
(d) $t_{1}+t_{2}$
2. The velocity-time graph of a body is shown in figure. The displacement covered by the body in 8 s is

(a) 9 m
(b) 12 m
(c) 10 m
(d) 28 m
3. A streamer moves with velocity $3 \mathrm{~km} \mathrm{~h}^{-1}$ in and against the direction of river water whose velocity is $2 \mathrm{~km} \mathrm{~h}^{-1}$. Calculate its total time for total journey if the boat travels 2 km in direction of the stream and then back to his place.
(a) 2 h
(b) 2.5 h
(c) 2.4 h
(d) 3 h
4. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t the maximum velocity acquired by the car is
(a) $\frac{\left(\alpha+\beta^{2}\right) t}{\alpha \beta}$
(b) $\frac{\alpha \beta}{\mathrm{t}(\alpha+\beta)}$
(c) $\frac{\alpha \beta}{(\alpha+\beta)}$
(d) $\frac{(\alpha+\beta) t}{\alpha \beta}$
5. A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the particle from O is given by $x=40+12 t-t^{3}$
How long would the particle travel before coming to rest?
(a) 24 m
(b) 40 m
(c) 12 m
(d) 16 m
6. A car covers the first one-third of distance x at a speed of $10 \mathrm{~km} \mathrm{~h}^{-1}$, the second one-third at a speed of $20 \mathrm{~km} \mathrm{~h}^{-1}$ and the last one-third at a speed of $60 \mathrm{~km} \mathrm{~h}^{-1}$. Find the average speed of the car over the entire distance x .
(a) $10 \mathrm{~km} \mathrm{~h}^{-1}$
(b) $12 \mathrm{~km} \mathrm{~h}^{-1}$
(c) $18 \mathrm{~km} \mathrm{~h}^{-1}$
(d) $20 \mathrm{~km} \mathrm{~h}^{-1}$
7. From the top of a tower, a particle is thrown vertically downwards with a velocity of $10 \mathrm{~ms}^{-1}$. The ratio of distance covered by it in the $3^{\text {rd }}$ and $2^{\text {nd }}$ seconds of the motion is (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(a) $5: 7$
(b) $7: 5$
(c) $3: 6$
(d) $6: 3$
8. The position x of a particle with respect to time t along x-axis is given by $x=9 t^{2}-t^{3}$, where x is in metre and t in second. What will be the position of this particle when it achieves maximum speed along the +x direction?
(a) 32 m
(b) 54 m
(c) 81 m
(d) 24 m
9. A particle initially at rest moves along the x-axis. Its acceleration a varies with time as $a=4 t$. If it starts from the origin, the distance covered by it in 3 second is
(a) 12 m
(b) 18 m
(c) 24 m
(d) 36 m
10. A ball is dropped on the floor from a height of 10 m . It rebounds to a height of 2.5 m . If the ball is in contact with the floor for 0.01 seconds, what is the average acceleration during contact?
(Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(a) $700 \mathrm{~ms}^{-2}$
(b) $1400 \mathrm{~ms}^{-2}$
(c) $2100 \mathrm{~ms}^{-2}$
(d) $2800 \mathrm{~ms}^{-2}$

TOPICS : Kinematics (SOLUTION)

1.

(c) : Let L be the length of escalator. Speed of man w.r.t. escalator is $v_{m c}=\frac{L}{t_{1}}$
Speed of escalator is $v_{c}=\frac{L}{t_{2}}$
$\therefore \quad$ Speed of man with respect to ground would be
$v_{m}=v_{m c}+v_{c}=L\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)$
$\therefore \quad$ The desired time is $t=\frac{L}{v_{m}}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
2.
(c) : Displacement in $8 \mathrm{~s}=$ Algebraic sum of the area under velocity-time graph
$=2 \times 2+\frac{1}{2} \times 1 \times 4+1 \times 2+\frac{1}{2} \times 1 \times 6-\frac{1}{2} \times 16-6 \times 1+2 \times 4$
$=4+2+2+3-3-6+8=10 \mathrm{~m}$,
3.
(c) : The velocity of streamer while moving downstream $=3 \mathrm{~km} \mathrm{~h}^{-1}+2 \mathrm{~km} \mathrm{~h}^{-1}=5 \mathrm{~km} \mathrm{~h}^{-1}$ and while moving upstream $=3 \mathrm{~km} \mathrm{~h}^{-1}-2 \mathrm{~km} \mathrm{~h}^{-1}=1 \mathrm{~km} \mathrm{~h}^{-1}$.
Total time taken $=\frac{2 \mathrm{~km}}{5 \mathrm{~km} \mathrm{~h}^{-1}}+\frac{2 \mathrm{~km}}{1 \mathrm{~km} \mathrm{~h}^{-1}}=0.4 \mathrm{~h}+2 \mathrm{~h}=2.4 \mathrm{~h}$
4.
(c) : Let the car accelerates for time t_{1} and decelerates for time t_{2}. Then,
$t=t_{1}+t_{2}$
and corresponding velocitytime graph will be as shown in figure.
From the graph,
$\alpha=$ slope of line $O A=\frac{v_{\text {max }}}{t_{1}}$

or $t_{1}=\frac{v_{\text {max }}}{\alpha}$
and $\beta=$ slope of line $A B=\frac{v_{\max }}{t_{2}}$
or $t_{2}=\frac{v_{\text {max }}}{\beta}$
From Eqs. (i), (ii) and (iii), we get
$t=\frac{v_{\text {max }}}{\alpha}+\frac{v_{\text {max }}}{\beta}$ or $t=v_{\text {max }}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)$
or $t=v_{\max }\left(\frac{\alpha+\beta}{\alpha \beta}\right)$ or $\quad v_{\max }=\frac{\alpha \beta t}{\alpha+\beta}$

$$
\text { (d) : Given: } x=40+12 t-t^{3}
$$

$\therefore \quad$ Velocity, $v=\frac{d x}{d t}=\frac{d}{d t}\left(40+12 t-t^{3}\right)=12-3 t^{2}$
When particle comes to rest, $v=0$
$\therefore \quad 0=12-3 t^{2}$ or $t=2 \mathrm{~s}$
When $t=0, x_{0}=40+12 \times 0-0^{3}=40 \mathrm{~m}$
When $t=2 \mathrm{~s}, x_{2}=40+12 \times 2-2^{3}=56 \mathrm{~m}$
\therefore Distance travelled before coming to rest
$S=x_{2}-x_{0}=56 \mathrm{~m}-40 \mathrm{~m}=16 \mathrm{~m}$
6.
(c) : For first one-third of distance

Distance covered $=\frac{x}{3} \mathrm{~km}$
Speed $=10 \mathrm{~km} \mathrm{~h}^{-1}$.
The time taken for the journey, $t_{1}=\frac{x / 3}{10} \mathrm{~h}=\frac{x}{30} \mathrm{~h}$
For the next one-third of distance :
Distance covered $=\frac{x}{3} \mathrm{~km}$.
Speed $=20 \mathrm{~km} \mathrm{~h}^{-1}$
The time taken for travel is $t_{2}=\frac{x / 3}{20} \mathrm{~h}=\frac{x}{60} \mathrm{~h}$
For the last one-third of distance :
Distance covered $=\frac{x}{3} \mathrm{~km}$.
Speed is $60 \mathrm{~km} \mathrm{~h}^{-1}$
The time taken for travel is $t_{3}=\frac{x / 3}{60} \mathrm{~h}=\frac{x}{180} \mathrm{~h}$
$\therefore \quad$ Average Speed $=\frac{\text { total distance }}{\text { total time }}=\frac{x}{\frac{x}{30}+\frac{x}{60}+\frac{x}{180}}$

$$
=\frac{180 x}{10 x}=18 \mathrm{~km} \mathrm{~h}^{-1}
$$

7.

(b) : Distance travelled in $3^{\text {rd }}$ second
$S_{3}=10+\frac{10}{2}(2 \times 3-1)=35 \mathrm{~m}$
Distance travelled in $2^{\text {nd }}$ second,
$S_{2}=10+\frac{10}{2}(2 \times 2-1)=25 \mathrm{~m} \Rightarrow \frac{S_{3}}{S_{2}}=\frac{7}{5}$
8.
(b) : Given, $x=9 t^{2}-t^{3}$
$v=\frac{d x}{d t}=18 t-3 t^{2}$
and $a=\frac{d v}{d t}=18-6 t$
Now, when speed of particle is maximum, its acceleration is zero, i.e., $a=0$

$$
\therefore \quad 18-6 t=0 \text { or } t=3 \mathrm{~s}
$$

Putting in Eq. (i), we obtain position of particle at that time $x=9(3)^{2}-(3)^{3}=54 \mathrm{~m}$
9. B
10.
(c) : $v_{1}=\sqrt{2 g h}=\sqrt{2 \times 10 \times 10}=\sqrt{200}$ $v_{2}=-\sqrt{2 g h}=-\sqrt{2 \times 10 \times 2.5}=-\sqrt{50}$ So $\quad \Delta v=v_{1}-v_{2}=\sqrt{200}+\sqrt{50}=3 \sqrt{50}=21$
\therefore Acceleration $=\frac{\Delta v}{\Delta t}=\frac{21}{0.01}=2100 \mathrm{~m} \mathrm{~s}^{-2}$

